Lecture 03
 12.3/12.4 Projections and the cross product

Jeremiah Southwick

January 18, 2019

Last Class

Definition
If $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle, \overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, and $k \in \mathbb{R}$, then we have the following operations:
Vector addition:

$$
\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle
$$

Last Class

Definition

If $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle, \overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, and $k \in \mathbb{R}$, then we have the following operations:
Vector addition:

$$
\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle
$$

Scalar multiplication:

$$
k \overrightarrow{\mathbf{u}}=\left\langle k u_{1}, k u_{2}, k u_{3}\right\rangle .
$$

Definition
Let $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Then

$$
\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
$$

is the dot product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.

Orthogonal Vectors

We want to extend the idea of perpendicular to more than 2 dimensions.

Orthogonal Vectors

We want to extend the idea of perpendicular to more than 2 dimensions.

Definition
Vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are orthogonal if $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=0$.

Orthogonal examples

Definition
Vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are orthogonal if $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=0$.
Example
Let $\overrightarrow{\mathbf{u}}=\langle 3,-2\rangle$ and $\overrightarrow{\mathbf{v}}=\langle 4,6\rangle$. Then

Orthogonal examples

Definition
Vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are orthogonal if $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=0$.
Example
Let $\overrightarrow{\mathbf{u}}=\langle 3,-2\rangle$ and $\overrightarrow{\mathbf{v}}=\langle 4,6\rangle$. Then $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=3(4)+(-2)(6)=0$.
So $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are orthogonal.

Orthogonal examples

Definition

Vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are orthogonal if $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=0$.
Example
Let $\overrightarrow{\mathbf{u}}=\langle 3,-2\rangle$ and $\overrightarrow{\mathbf{v}}=\langle 4,6\rangle$. Then $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=3(4)+(-2)(6)=0$.
So $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are orthogonal.
Example
Similarly, $\overrightarrow{\mathbf{0}}$ and any other vector are orthogonal, since
$\overrightarrow{\mathbf{0}} \cdot \overrightarrow{\mathbf{u}}=0\left(u_{1}\right)+0\left(u_{2}\right)+0\left(u_{3}\right)=0$.

Properties of the dot product

The dot product satisfies the following properties (page 721):

1. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$
2. $(c \overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{u}} \cdot(c \overrightarrow{\mathbf{v}})=c(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})$
3. $\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$
4. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}}=\|\overrightarrow{\mathbf{u}}\|^{2}$
5. $\overrightarrow{\mathbf{0}} \cdot \overrightarrow{\mathbf{u}}=0$

Properties of the dot product

4. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}}=\|\overrightarrow{\mathbf{u}}\|^{2}$

Properties of the dot product

4. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}}=\|\overrightarrow{\mathbf{u}}\|^{2}$

Let $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$.

$$
\begin{aligned}
& \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}} \\
& =u_{1}\left(u_{1}\right)+u_{2}\left(u_{2}\right)+u_{3}\left(u_{3}\right) \\
& =u_{1}^{2}+u_{2}^{2}+u_{3}^{2} \\
& =\|\overrightarrow{\mathbf{u}}\|^{2}
\end{aligned}
$$

Left hand side of equation
Definition of dot product
Simplified
Definition of length

Vector projections

We can project one vector onto another vector.

Vector projections

We can project one vector onto another vector.

To do this algebraically, we need a length and a direction.

Vector projections

We can project one vector onto another vector.

To do this algebraically, we need a length and a direction. The direction is the same as the direction of $\overrightarrow{\mathbf{v}}$.

Vector projections

We can project one vector onto another vector.

To do this algebraically, we need a length and a direction.
The direction is the same as the direction of $\overrightarrow{\mathbf{v}}$.
The length (from the picture) is the hypotenuse of the triangle times $\cos (\theta)$.

Vector projections

The direction is the same as the direction of $\overrightarrow{\mathbf{v}}$. The length (from the picture) is the hypotenuse of the triangle times $\cos (\theta)$.
Thus we have

$$
\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})=(\|\overrightarrow{\mathbf{u}}\| \cos (\theta))(\text { unit vector in direction of } \overrightarrow{\mathbf{v}})
$$

Vector projections

The direction is the same as the direction of $\overrightarrow{\mathbf{v}}$. The length (from the picture) is the hypotenuse of the triangle times $\cos (\theta)$.
Thus we have

$$
\left.\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})=(\|\overrightarrow{\mathbf{u}}\| \cos (\theta)) \text { (unit vector in direction of } \overrightarrow{\mathbf{v}}\right)
$$

$$
=(\|\overrightarrow{\mathbf{u}}\| \cos (\theta))\left(\frac{\overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|}\right)
$$

Vector projections

The direction is the same as the direction of $\overrightarrow{\mathbf{v}}$.
The length (from the picture) is the hypotenuse of the triangle times $\cos (\theta)$.
Thus we have

$$
\left.\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})=(\|\overrightarrow{\mathbf{u}}\| \cos (\theta)) \text { (unit vector in direction of } \overrightarrow{\mathbf{v}}\right)
$$

$$
\begin{aligned}
& =(\|\overrightarrow{\mathbf{u}}\| \cos (\theta))\left(\frac{\overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|}\right) \\
& =\left(\frac{\|\overrightarrow{\mathbf{u}}\|(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})}{\|\overrightarrow{\mathbf{u}}\|\|\overrightarrow{\mathbf{v}}\|}\right)\left(\frac{\overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|}\right) .
\end{aligned}
$$

This can be cleaned up a bit.

Vector projections

$$
\left(\frac{\|\overrightarrow{\mathbf{u}}\|(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})}{\|\overrightarrow{\mathbf{u}}\|\|\overrightarrow{\mathbf{v}}\|}\right)\left(\frac{\overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|}\right)
$$

Definition
Let $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ be nonzero vectors. Then the projection of $\overrightarrow{\mathbf{u}}$ onto $\overrightarrow{\mathbf{v}}$ is

$$
\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})=\left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|^{2}}\right) \overrightarrow{\mathbf{v}}
$$

Projection properties

Projection properties

The number $\|\overrightarrow{\mathbf{u}}\| \cos (\theta) \quad\left(=\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|}\right)$ is called the scalar component of $\overrightarrow{\mathbf{u}}$ in the direction of $\overrightarrow{\mathbf{v}}$.

Projection example

Example
Let $\overrightarrow{\mathbf{u}}=6 \overrightarrow{\mathbf{i}}+3 \overrightarrow{\mathbf{j}}+2 \overrightarrow{\mathbf{k}}$ and $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{i}}-2 \overrightarrow{\mathbf{j}}-2 \overrightarrow{\mathbf{k}}$.

Projection example

Example
Let $\overrightarrow{\mathbf{u}}=6 \overrightarrow{\mathbf{i}}+3 \overrightarrow{\mathbf{j}}+2 \overrightarrow{\mathbf{k}}$ and $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{i}}-2 \overrightarrow{\mathbf{j}}-2 \overrightarrow{\mathbf{k}}$. Then

$$
\begin{aligned}
\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}}) & =\left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|^{2}}\right) \overrightarrow{\mathbf{v}}=\left(\frac{6-6-4}{1+4+4}\right)\langle 1,-2,-2\rangle \\
& =-\frac{4}{9}\langle 1,-2,-2,\rangle=\left\langle-\frac{4}{9}, \frac{8}{9}, \frac{8}{9}\right\rangle .
\end{aligned}
$$

12.4 The cross product

12.4 The cross product

We want to define another vector product, the cross product, which we will denote as $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$.

12.4 The cross product

We want to define another vector product, the cross product, which we will denote as $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$.
Whereas the dot product gave us a number, we now want a vector product that gives us a vector.

12.4 The cross product

We want to define another vector product, the cross product, which we will denote as $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$.
Whereas the dot product gave us a number, we now want a vector product that gives us a vector.
To find a new vector, we need a length and a direction.

Direction of $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$

Direction of $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$

The direction of $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ is the unit vector $\overrightarrow{\mathbf{n}}$ shown in the picture below.

The direction of $\overrightarrow{\mathbf{n}}$ (up, rather than down), is chosen with the right-hand rule.

Length of $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$

Length of $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$

The length of $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ is the area of the parallelogram formed by $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.

Length of $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$

The length of $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ is the area of the parallelogram formed by $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.

This area is $\|\overrightarrow{\mathbf{u}}\|\|\overrightarrow{\mathbf{v}}\| \sin (\theta)$.

The cross product

Definition

The cross product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$, denoted $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$, is the vector

$$
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=(\|\overrightarrow{\mathbf{u}}\|\|\overrightarrow{\mathbf{v}}\| \sin (\theta)) \overrightarrow{\mathbf{n}} .
$$

