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Definition
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Last Class
Definition
Ifu = (ui,up,u3), Vv=(v1,va,v3), and k € R, then we have the

following operations:
Vector addition:

U-+v=1{(u+wvi,u+ vo,u3+ v3)
Scalar multiplication:

ku = (kuy, kua, kus).

Definition
Let u = (u1, up, u3) and Vv = (v1,va,v3). Then

VWV =1vi+ thvo + U3v3

(=

is the dot product of U and V.
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Orthogonal examples

Definition
Vectors u and v are orthogonal if u - v = 0.

Example

Let u= (3,—2) and v = (4,6). Thenu-v =3(4)+ (—2)(6) =0.
So u and v are orthogonal.

Example

Similarly, 0 and any other vector are orthogonal, since
0-u= O(Ul) + O(Uz) + O(U3) =0.



Properties of the dot product

The dot product satisfies the following properties (page 721):

L G-v=v u

2. (cli) -V =i (c¥) = c(ii - V)
3.G- (VW) =G -V+i-w
4. G- = ||

5. 0-4=0
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Properties of the dot product

u-u Left hand side of equation
= u1(u1) + up(u2) + uz(us) Definition of dot product
=2+ U3+ U3 Simplified

= ||d|)? Definition of length
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Vector projections

The direction is the same as the direction of v.
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Vector projections

The direction is the same as the direction of v.

The length (from the picture) is the hypotenuse of the triangle
times cos(0).

Thus we have

projg(u) = (||u]| cos(8)) (unit vector in direction of V)
v
= (||ul| cos(8)) | —=
(1l os(0) (7

= (et ) ()

This can be cleaned up a bit.



Vector projections

(HGH(H-V)> <\7>
[[a]|][v]] Ikl
Definition

Let G and vV be nonzero vectors. Then the projection of U onto v is

- u-v)._
prO_]q(U) = H\—i”z v.




Projection properties

cl

projg(t) # projg(V)

<




Projection properties

The number ||u]| cos(6) ( = |‘|?‘7‘|7> is called the scalar component

of u in the direction of V.



Projection example

Example
Let i = 6i + 3j + 2k and v =i — 2j — 2k.



Projection example

Example
Let G = 6i+3j+ 2k and V =i— 2j — 2k. Then

u-v 6—6—4
(i) = —— V= ———)(1, -2, -2

4 4 8 8
= —(1,-2,-2,) = (—=, =, 2).
9<7 ) 7> < 97979>
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12.4 The cross product

We want to define another vector product, the cross product,
which we will denote as u x V.

Whereas the dot product gave us a number, we now want a vector
product that gives us a vector.

To find a new vector, we need a length and a direction.



Direction of u x v



Direction of U X v

The direction of U x V is the unit vector i shown in the picture
below.

<!

u

The direction of i (up, rather than down), is chosen with the
right-hand rule.



Length of U x v



Length of u x v

The length of U x V is the area of the parallelogram formed by u
and v.

<!

|t X v

Y

u




Length of u x v

The length of U x V is the area of the parallelogram formed by u
and v.

<!

|t X v

Y

u

This area is ||u]|||v|| sin(0).



The cross product

Definition
The cross product of U and v, denoted u x v, is the vector

u > v = ([|af[[|v]} sin(6))n.

A 4




