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Last Class

Definition
If ~u = 〈u1, u2, u3〉, ~v = 〈v1, v2, v3〉, and k ∈ R, then we have the
following operations:
Vector addition:

~u +~v = 〈u1 + v1, u2 + v2, u3 + v3〉

Scalar multiplication:

k~u = 〈ku1, ku2, ku3〉.

Definition
Let ~u = 〈u1, u2, u3〉 and ~v = 〈v1, v2, v3〉. Then

~u ·~v = u1v1 + u2v2 + u3v3

is the dot product of ~u and ~v.
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Orthogonal Vectors

We want to extend the idea of perpendicular to more than 2
dimensions.

Definition
Vectors ~u and ~v are orthogonal if ~u ·~v = 0.
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Example

Let ~u = 〈3,−2〉 and ~v = 〈4, 6〉. Then

~u ·~v = 3(4) + (−2)(6) = 0.
So ~u and ~v are orthogonal.

Example

Similarly, ~0 and any other vector are orthogonal, since
~0 · ~u = 0(u1) + 0(u2) + 0(u3) = 0.
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Properties of the dot product

The dot product satisfies the following properties (page 721):

1. ~u ·~v = ~v · ~u
2. (c~u) ·~v = ~u · (c~v) = c(~u ·~v)

3. ~u · (~v + ~w) = ~u ·~v + ~u · ~w
4. ~u · ~u = ‖~u‖2

5. ~0 · ~u = 0



Properties of the dot product

4. ~u · ~u = ‖~u‖2

Let ~u = 〈u1, u2, u3〉.

~u · ~u Left hand side of equation

= u1(u1) + u2(u2) + u3(u3) Definition of dot product

= u21 + u22 + u23 Simplified

= ‖~u‖2 Definition of length
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Vector projections

We can project one vector onto another vector.

x
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proj~v(~u)

To do this algebraically, we need a length and a direction.
The direction is the same as the direction of ~v.
The length (from the picture) is the hypotenuse of the triangle
times cos(θ).
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Vector projections

The direction is the same as the direction of ~v.
The length (from the picture) is the hypotenuse of the triangle
times cos(θ).
Thus we have

proj~v(~u) =
(
‖~u‖ cos(θ)

)(
unit vector in direction of ~v

)

=
(
‖~u‖ cos(θ)

)( ~v

‖~v‖

)

=

(
‖~u‖(~u ·~v)
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~v
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)
.

This can be cleaned up a bit.
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Vector projections

(
‖~u‖(~u ·~v)

‖~u‖‖~v‖

)(
~v

‖~v‖

)
Definition
Let ~u and ~v be nonzero vectors. Then the projection of ~u onto ~v is

proj~v(~u) =

(
~u ·~v
‖~v‖2

)
~v.



Projection properties

proj~v(~u) 6= proj~u(~v)
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Projection properties

The number ‖~u‖ cos(θ)

(
= ~u·~v
‖~v‖

)
is called the scalar component

of ~u in the direction of ~v.



Projection example

Example

Let ~u = 6~i + 3~j + 2~k and ~v =~i− 2~j− 2~k.

Then

proj~v(~u) =

(
~u ·~v
‖~v‖2

)
~v =

(
6− 6− 4

1 + 4 + 4

)
〈1,−2,−2〉

= −4

9
〈1,−2,−2, 〉 = 〈−4

9
,

8

9
,

8

9
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12.4 The cross product

We want to define another vector product, the cross product,
which we will denote as ~u×~v.
Whereas the dot product gave us a number, we now want a vector
product that gives us a vector.
To find a new vector, we need a length and a direction.
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Direction of ~u× ~v

The direction of ~u×~v is the unit vector ~n shown in the picture
below.

~u

~v
~n θ

The direction of ~n (up, rather than down), is chosen with the
right-hand rule.
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Length of ~u× ~v

The length of ~u×~v is the area of the parallelogram formed by ~u
and ~v.

~u

~v |~u×~v|
θ

This area is ‖~u‖‖~v‖ sin(θ).
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The cross product

Definition
The cross product of ~u and ~v, denoted ~u×~v, is the vector

~u×~v = (‖~u‖‖~v‖ sin(θ))~n.

~u

~v
~n |~u×~v|

~u×~v

θ


